

PAR-003-001544

Seat No.

B. Sc. (Sem. V) Examination

October / November - 2018
Statistics: S-503
(Statistical Inference)
(Old Course)

Faculty Code: 003 Subject Code: 001544

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions: (1) All the questions are compulsory.

- (2) Que-1 carry 20 marks.
- (3) Que-2 and 3 carry 25 marks.
- (4) Students can use their own Scientific calculators.
- 1 Filling the blanks and short questions: (Each 1 mark) 20
 - (1) The estimation of a parameter by the method of minimum Chi-square utilizes _____ statistic.
 - (2) An estimator T_n which is most concentrated about parameter θ is the _____ estimator.
 - (3) If T_n is an estimator of a parametric function $\tau(\theta)$, the mean square error of T_n is equal to _____.
 - (4) If a random sample $x_1, x_2, x_3,, x_n$ is drawn from a population $N(\mu, \sigma^2)$, the maximum likelihood estimate of μ is _____.
 - (5) If T_n is an estimator of a parameter θ of the density $f(x;\theta) \quad \text{the quantity} \quad E\bigg[\frac{\partial}{\partial \theta}\log f(x;\theta)\bigg]^2 \quad \text{is called}$ the _____.

(6)	If S	$= s(X_1, \lambda)$	$X_2, X_3,$	X_n	is a s	ufficient sta	atistic for
	θ of	density	$f(x;\theta)$	and	$f(x_i; \theta)$	for $i = 1$,	2, 3, <i>n</i>
	can	be	factoris	sed	as	$g(s,\theta)h(x)$, then
	$s(X_1,$	$X_2, X_3,$	\dots, X_n	is a		_•	

- (7) An estimator of $v_{\theta}(T_n)$ which attains lower bound for all θ is known as _____.
- (8) If an estimator T_n converges in probability to the parametric function $\tau(\theta), T_n$ is said to be a _____ estimator.
- (9) An unbiased and complete statistic is compulsorily _____.
- (10) Let $x_1, x_2, x_3, \ldots, x_n$ be a random sample from a density $f(x, \theta) = \theta e^{-\theta x}$. Then the Crammer-Rao lover bound of variance of unbiased estimator is _____.
- (11) ______ is an unbiased estimator of p^2 in Binomial distribution.
- (12) Method of moments for estimating the parameters of a distribution was given by _____ in 1894.
- (13) A value of an estimator is called an _____.
- (14) If we have a random sample of size n from a population $N(\mu, \sigma^2)$, then sample mean is _____ efficient than sample median.

- (15) Let there be a sample of size n from a normal population with mean μ and variance σ^2 . The efficiency of median relative to the mean is _____.
- (16) Write likelihood function of Poisson distribution.
- (17) Name different criteria of good estimators.
- (18) Write likelihood function of

$$f(x,\theta) = {\binom{-k}{x}} \theta^k (\theta - 1)^x; 0 \le \theta \le 1.$$

- (19) Define Likelihood function.
- (20) Obtain Crammer-Rao lower bound of variance of unbiased estimator of parameter of $f(x, \theta) = \theta e^{-x\theta}; 0 \le x \le \infty$.
- 2 (a) Write the answer any three each 2 marks)
 - (1) Define Sufficiency.
 - (2) Define Efficiency.
 - (3) Define Parameter space.
 - (4) Define Uniformly Most Powerful Test (UMP test).
 - (5) Define ASN function of SPRT.
 - (6) Obtain likelihood function of Negative Binomial distribution.
 - (b) Write the answer any three each 3 marks) 9
 - (1) Obtain estimator of θ by method of moments in the following distribution

$$f(x; \theta) = \theta e^{-\theta x}$$
; where $0 \le x \le \infty$.

(2) $\frac{\overline{x}}{n}$ is a consistent estimator of p for Binomial distribution.

6

- (3) Obtain MVUE of parameter θ for Poisson distribution. Also obtain its variance.
- (4) Obtain Operating Characteristic (OC) function of SPRT.
- (5) Give a random sample $x_1, x_2, x_3,, x_n$ from distribution with p.d.f $f(x; \theta) = \frac{1}{\theta}; 0 \le x \le \theta$. Obtain power of the test for testing $H_0: \theta = 1.5$ against $H_1: \theta = 2.5$, where $C = \{x; x \ge 0.8\}$.
- (6) Obtain unbiased estimator of $\frac{kq}{p}$ of Negative Binomial distribution.
- (c) Write the answer any two each 5 marks)
 - (1) Obtain OC function for SPRT of Binomial distribution for testing $H_0: p = p_0$ against $H_1: p = p_1 (> p_0)$.
 - (2) Estimate α and β in the case of Gamma distribution by the method of moments $f(x; \alpha, \beta) = \frac{\alpha^{\beta}}{\Gamma \beta} e^{-ax} x^{\beta-1}; x \ge 0, \alpha \ge 0.$
 - (3) State Crammer-Rao inequality and prove it.
 - (4) If T_1 and T_2 be two unbiased estimator of θ with variance σ_1^2, σ_2^2 and correlation ρ , what is the best unbiased linear combination of T_1 and T_2 and what is the variance of such a combination?
 - (5) Obtain Likelihood Ration Test: Let $x_1, x_2, x_3,, x_n$ random sample taken from $N(\mu, \sigma^2)$. To test $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 \neq \sigma_0^2$.

10

- 3 (a) Write the answer any three each 2 marks: 6
 - (1) Show that $\sum x_i$ is a sufficient estimator of θ for Geometric distribution.
 - (2) Define Minimum Variance Bound Estimator (MVBE).
 - (3) Define Consistency.
 - (4) Obtain an sufficient estimator of θ by for the following distribution $f(x;\theta) = \theta^x (1-\theta)^{(1-x)}; x = 0,1$.
 - (5) Obtain an unbiased estimator of θ by for the following distribution $f(x; \theta) = \frac{1}{\theta}$; $0 \le x < \theta$.
 - (6) Define Complete family of distribution.
 - (b) Write the answer any three each 3 marks)
 - (1) Obtain MLE of parameter p for the following distribution $f(x; p) = pq^x; x = 0, 1, 2, ..., \infty$.
 - (2) Let $x_1, x_2, x_3, \dots, x_n$ be random sample taken from $N(\mu, \sigma^2)$, then find sufficient estimator of μ and σ^2 .
 - (3) Prove that $E\left(\frac{\partial \log L}{\partial \theta}\right)^2 = -E\left(\frac{\partial^2 \log L}{\partial \theta^2}\right)$

9

- Let p be the probability that coin will fall head in a single toss in order to test $H_0: p = \frac{1}{2}$ against $H_1: p = \frac{3}{4}$. The coin is tossed 6 times and H_0 is rejected if more than 4 head are obtained. Find the probability of type-I error, type-II error and power of test.
- (5) Use the Neyman Pearson lemma to obtain the best critical region for testing $H_0: \lambda = \lambda_0$ against $H_1: \lambda = \lambda_1$ in the case of Poisson distribution with parameter λ .
- (6) Obtain an unbiased estimator of population mean of χ^2 distribution.
- (c) Write the answer any two each 5 marks: 10
 - (1) Construct SPRT of Poisson distribution for testing $H_0: \lambda = \lambda_0 \quad \text{against} \quad H_1: \lambda = \lambda_1 \left(> \lambda_0 \right). \quad \text{Also obtain}$ OC function of SPRT.
 - (2) State Neyman-Pearson lemma and prove it.
 - (3) Let $x_1, x_2, x_3, \dots, x_n$ be random sample from the

p.d.f.
$$f(x, p) = \frac{1}{(1-q^3)} {3 \choose x} p^x q^{3-x}$$
, where $x = 0, 1, 2, 3$.

Estimate parameter of p by the method of moment.

(4)

(4) For the double Poisson distribution

$$p(X = x) = \frac{1}{2} \frac{e^{m_1} m_1^x}{x!} + \frac{1}{2} \frac{e^{-m_2} m_2^x}{x!}; 0, 1, 2, \dots$$

Show that the estimator for m_1 and m_2 by the method of moment are $\mu_1' \pm \sqrt{\mu_2' - \mu_1' - \left(\mu_1'\right)^2}$.

(5) Obtain MVBE of σ^2 for Normal distribution.